
Proceedings of the

NSF Compiler Technology
Workshop

September 6&7, 2001

Annapolis MD

Preface
By

Dr. Frederica Darema,
CISE/NSF

In October 1998, I announced the Next Generation Software (NGS) Program which is fostering
technology for more systematic methods of performance engneering computing systems and new
compiler and application composition technology for supporting application development,
adaptive mapping and optimized execution of applications on heterogeneous and distributed
platforms under dynamically varying computation and communication resource availability.
Specific technology directions to enable such capabilities have been set forward in both the
description of the program announcement (NSF 98-12, NSF 00-134, and NSF01-147), in
http://www.interact.nsf.gov/cise/descriptions.nsf/eia_progs?OpenView, and a set of
http://www.cise.nsf.gov/eia/NGS-slides/index.htm. The program already conducted two
competitions (in FY99 and FY01), which have resulted in funding nearly 40 projects, and there is
currently a third call for proposals (http://www.nsf.gov/cgi-bin/getpub?nsf01147).

The purpose of the 2-day workshop (on Sept 6&7, 2001) to discuss directions, challenges and
opportunities in specifically in Compiler Technology, which is one of the areas fostered in the
NGS program. The purpose of the September 6&7 meeting was to have a forum to discuss what
are the new opportunities in compiler technology, not only those as fostered by the NGS program
but also additional opportunities and directions.

The workshop convened a number of representatives from the academic community who
discussed issues and approaches. The participants were asked to submit on a voluntary basis
their preliminary thoughts on important compiler technology issues. The format of the workshop
included, introduction by Dr. Frederica Darema, Director of the NGS program, Plenary
presentations by Profs. Arvind (MIT), Steve Wallach(Chiaro Networks), Jack Davidson (UVA),
Ken Kennedy (Rice Univ.) and Paul Woodward (Univ. of Minnnesota), and then discussions by
the participants who were split into two working groups. The plenary presentations addressed
views on hardware, systems software, and on applications directions and challenges.

The proceedings include: Invitation letter, introductory presentation, the preliminary input by the
participants (under the heading Leading Views by Participants), and slides of the final
presentations made to summarize the groups discussions.

The discussions and the summaries of the Working Groups showed that the participants believe
that the technical directions and approaches fosted by the NGS program are the right set of
directions, are still challenging and in need of development of ideas and prototype technology,
and in need of further support. In addition the participants felt that there might be addtional
opportunities in investigating the role of compilers in software reliability and it was agreed that a
workshop focusing on that topic will be beneficial and will be pursued in the future.

Dr. Darema also has urged the community to come-up with a new name for the compiler
technology fostered by NGS (other than compiler, distributed compiler, or dynamic compiler – all
of which have already specific meanings, or runtime which connotes the OS level). A suggestion
was made to be called the “NGS-Compiler”, a notion rejected by Dr. Darema, so the suggestion is
made hereby for the use of the term “Runtime Compiling System (RCS)" , although other
suggestions are welcome.

Prepared by Dr. Frederica Darema
(September 2001)

Leading Views by Participants

NSF Compiler Technology
Workshop

September 6&7, 2001

Annapolis MD

Challenges for Compiler Research
Vikram S. Adve

New trends in program development and new types of applications are beginning to pose major challenges
for current compiler technology. The following identifies two areas where we believe a major rethinking of
compiler and programming language strategies will be needed.

1. Link-Time and Runtime Optimization

Motivation: Modern programming trends significantly limit the effectiveness of static program
optimization. First, object-oriented languages result in extensive use of pointers, dynamic method dispatch,
and small methods. Second, large commercial applications are increasingly being constructed by linking
together component libraries with some application-specific code. Both these trends imply that
interprocedural link-time optimization and dynamic optimization are becoming increasingly important for
achieving high performance in modern applications.
Challenges: Despite intensive research, traditional approaches to link-time and runtime optimization have
failed to surmount two challenges. First, such approaches focus mainly on optimizing object code, which is
extremely difficult to analyze, so that only low-level machine-oriented optimizations have been possible.
Second, the overhead of optimization is a fundamental bottleneck at runtime that cannot be overcome in
software alone. Optimization overhead can also be a significant impediment to link-time optimization of
very large applications.

Proposed strategies: These observations argue that a radical new approach is required to overcome the
challenges above. In particular, we are exploring the use of a new, rich object-code format (a virtual
machine instruction set) that uses low-level operations but includes detailed information about the types
and dataflow properties of program variables. This information enables most static optimizations to be
performed on the object code, and also reduces the analysis costs for the optimizations. Second, we are
experimenting with a simple compilation coprocessor that can be used to perform dynamic compilation
for both native code optimizers and for JIT compilers such as for JAVA or Microsoft’s .NET code format
(and thus move this overhead out of the critical path of the application).

2. Compiler Support for Adaptive Distributed Applications
Motivation: Many future distributed applications will have to be adaptive to achieve their performance
goals, including speedups for parallel Grid codes, quality-of-service (QoS) requirements for distributed
multimedia codes, bandwidth and power management for mobile computing, and fault-tolerance in all these
domains. Current programming support for adaptive applications is limited to middleware and network
services such as performance monitoring and resource allocation. There is very limited research on
performance prediction techniques to support adaptation, and none so far on programming language and
compiler support. Such research could greatly simplify the development of sophisticated adaptive
distributed applications.

Challenges: We can identify three major research challenges in this area. First, current adaptive
applications are forced to incorporate adaptation code directly into the distributed application, resulting in
complex codes that are difficult to understand, maintain, and modify. Second, because of the wide variety
of application-specific adaptation strategies that are being used or proposed, there is simply no common
framework with which to reason about and implement adaptation techniques. Finally, the existing work on
performance models to guide adaptation require models that must be entirely developed by the
programmer, which is impractical due both to time constraints and to limited systems and modeling
expertise among applications scientists.

Proposed strategies: We have proposed a Program Control Language (PCL), which provides first-class
support for adaptive applications without requiring extensive changes to existing distributed codes. The
language allows adaptation behavior to be separated from the underlying application, and also exposes to
the compiler the runtime metrics and control parameters used to perform adaptation. Second, we are

developing a formal task-graph-based framework with a small set of adaptation mechanisms that can be
used to describe adaptation operations in a wide variety of applications, and to reason about and design
such adaptations. Finally, we are using our task graph framework and additional compiler support to
enable semi-automatic performance prediction, where the programmer is only required to program those
model components and metrics that are algorithm-dependent, while the compiler and runtime system
provide the components that can be automated (via prediction or measurement).

Nancy M. Amato

Many important applications are becoming large consumers of
computing power, data storage and communication bandwidth.
There are many major challenges involved in providing the
services these increasingly diverse applications require.
For example, a multimedia application might require simultaneous,
real-time use of several limited resources, and this application
might be in competition with a biotech application which may
not have strict response time requirements, but does require
substantial computational resources.

Current modeling and optimization techniques are ill equipped
to deal with such variable resource requirements on a single
system. And they are even less able to address problems that
require optimization over multiple systems, some of which
are highly reconfigurable. Moreover, it is often not even
possible to determine which resources, what service guarantees,
etc, are needed to provide optimal performance for an application.

Obtaining scalable, optimized performance for all such applications
appears to be impossible under the current framework which
modularly optimizes, in isolation, various system components.
Instead, an application-driven optimization strategy has the
potential to overcome many of these pitfalls. The optimization
need only apply to this particular instance of this particular
application. There are many challenges involved in creating
such an application-driven system. The basic strategy should
be to determine and then satisfy the needs of the application,
dynamically. While this would ideally be performed automatically
by the compiler and the run-time system, there are many cases
which could be greatly facilitated by enabling the application
programmer to communicate application-specific knowledge
to the sytem. Developing a useful, general framework supporting
this would be extremely interesting and important.

An increasingly important application domain that must be addressed
by such efforts is Computational Biology and Chemistry. With the
sequencing of the human genome, proteinomics, and in particular
problems such as protein folding, have become the next frontier in
biotechnology. Current simulation techniques such as molecular
dynamics are inadequate to solve these problems on existing
architectures. Aggressive architectures may help, but new
computational techniques coupled with sophisticated application
specific optimization are essential before any widespread
progress can occur.

High-level Hardware Synthesis: An application ready for serious compiler research

Arvind
Laboratory for Computer Science, M.I.T.

Traditionally, compiler research has focused on general purpose high-level languages for large classes of
machines. Front-end compiler researchers tend to focus on the properties of object-oriented or declarative
languages and often employ sophisticated algorithms for static analyses and program transformations.
Back-end compiler researchers tend to focus on specific classes of machines characterized by instruction
set architectures and memory hierarchy architectures, such as RISC, VLIW, SMPs, distributed memory
machines, SIMD and DSPs. Lately, attention has also been paid to compiling for a large number of
processors with fixed communications structures. Often people outside our subfield find our results esoteric
and incremental. (When was the last time you were excited by a compiler breakthrough?)

A special purpose language, on the other hand, can generate much excitement if it has impact on an
important application. Well-designed word processors, spreadsheets and graphics packages are all
examples of exciting applications with a significant compiler component. Hardware synthesis is a
particularly rich example. In the last decade, hardware design has moved from schematic capture to widely
accepted textual languages such as Verilog and VHDL. Compilers (synthesis tools) translate textual,
functional hardware descriptions into gate-level netlists that must meet stringent constraints such as clock
speed, area, power consumption, isolated and in-circuit testability, pin-out limitations, etc. The state of the
art of these languages and compilers leaves much to be desired—we are still in the dark ages. Verilog and
VHDL, while a vast improvement over the prior schematic capture methods, are still very low-level
languages (the “assemblers” of hardware design). Compilers for these languages are extremely expensive
and are so full of (unpleasant) surprises that much training is needed merely to use the associated tools.
The optimization problem for these compilers is fascinating and complex, where the speed the object code
is only one of several important objectives. Debugging tools are primitive at best, requiring much manual
labor and manual tracing of individual signals on wires. Because of the lack of correct-by-construction
and/or correctness proof methodologies, current practice relies almost exclusively on testing
(“verification”), and this can dominate the time from concept to chip.

Yet the need for better hardware synthesis tools is undeniable. Already it takes the better part of a year to
go from concept to tape-out for a reasonably complex ASIC (and only a month or two more actually to
manufacture the chip). This problem gets worse every year as chip density continues inexorably to
increase, time-to-market pressures increase, and the algorithmic complexity of hardware functions
increase. For almost all hand-held devices, Internet infrastructure equipment (such as routers), I/O
protocol controllers, and so on, ASIC development time is the bottleneck in time-to-market.

There is much scope for deep and impactful compiler research related to hardware synthesis, and a lot of it
can be undertaken with even just a rudimentary knowledge of hardware.

Reconfigurable Compilers for the Modern World, Keith Cooper – Rice University. View HTML, PDF

Ron Cytron

As architectures open up more features to the instruction set, compilers
must keep pace with these advances. Examples include liquid
architectures, where (for example) the number of registers or adders could
change dynamically; IRAM devices that can push computation from the CPU
into the storage subsystem; and smart I/O devices (active disks) and web-
attached devices.

As resources such as network bandwidth and multimedia devices become
accessible to programs, and as said programs develop real-time constraints
on such shared resources, it is important that programs be able to adapt to
changes in their environment -- diminishment or replenishment of resources.
Language, compiler, and runtime support is required to compel programs to
be readily adaptive to such changes.

Aspect-oriented programming (AOP) is surfacing as a powerful tool for
program evolution. AspectJ is an example of such a tool, but it runs
out-of-band with the compiler. Aspect-aware compilation and formalization
of aspect-oriented systems is required to bring AOP into the mainstream
of software development projects.

Finally, real-time efforts such as RT Java will require substantial investment
by the research community of such languages are to become practical.
Simple examples include run-time libraries made ready for real-time,
but work is also needed to make real-time adaptable, portable, and
high-performing.

Summary Statement for NSF Compiler Workshop, Jack Davidson - University of Virginia. View
HTML, PDF*

Position Statement:
New Directions in Compiler Technology for Embedded Systems

Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
dutt@uci.edu

Traditionally, compiler technology has focused on the generation of code
with the goal of improving performance for a variety of applications
running on general-purpose processor architectures. In the embedded system
space, compiler technology is faced with many new challenges, including:
 - code generation for specialized architectural features, requiring a highly
 flexible degree of retargetability
 - memory-aware code generation that exploits the timing and structure of
 the embedded system's memory organization
 - optimizing software to meet both real-time and performance constraints
 - energy- and power-aware software generation, both from the context of energy
 minimization, as well as power modulation
 - code size minimization for memory-constrained embedded systems
 - coarse-grain transformations for tightly-coupled, memory-constrained
 multi-processor architectures
 - interaction with the operating system for active management
 of embedded system resources.

A critical aspect of compiler technology for embedded systems is the
ability to handle heterogeneous, non-traditional architectural styles
(e.g., a combination of VLIW, DSP and Superscalar),
coupled with multiple design goals such as low-power, fast performance,
and small code footprint. As the needs of these embedded processor
architectures vary radically, the ability to *customize* a compiler
toolchain for an instance of the architecture becomes critical.
Furthermore, advances in fabrication technology allow configurable
Systems-on-a-Chip (SOC), which in turn provides system designers with
the ability to customize architectures suitable for specific application
domains, such as networking, communications and graphics.

System designers thus need the ability to rapidly explore architectural
alternatives using a "compiler-in-the-loop", i.e., being able to rapidly
generate code customized for each architectural instance, and evaluate
its effect on power, performance and code size. Furthermore, once a
candidate architecture has been identified, there is a need for
compilers that can generate high-quality code for the architecture.
In essence, what is required is a highly retargetable compiler that
can function as an *estimator* (enabling fast architectural exploration),
as well as a high-quality code generator.

A critical technology for enabling such extensive retargetability
is an Architecture Description Language (ADL) based approach,
where the ADL formally describes various facets of the architecture,
and allows rapid generation of an entire software toolkit
(compiler, simulator, debugger, synthesis models, and verification
tools). Whereas such an idea has been explored in the past within the narrow
confines of specific architectural styles (e.g., VLIW or DSP),
the move towards customizable programmable SOCs critically

needs a generalized ADL approach that can fully expose all
of the architectural and micro-architectural details to a
toolkit generator, including the processors, co-processors,
memory subsystems, control units, as well as I/O devices.
This ADL approach not only provides a formal means for specifying,
validating, and refining the software toolchain for the architecture,
but it also provides specific "hooks" that allow for interaction
with the runtime/operating systems, as well as with the external
environment.

Guang Gao

Future high-performance computers such as these will have large
numbers of processors (from a few thousand to several hundred
thousand, or even more), and a complex multilevel memory hierarchy
with memories physically distributed across different parts of the
machine. To use such machines effectively, considerable amounts of
parallelism must be exposed in user programs, and careful attention
must be paid to the latency and bandwidth of access to different
levels of the memory hierarchy.

This challenge can only be met by new software technologies for the
design, development, runtime support, and management of applications.
We believe the key is the design and implementation of (i) a suitable
program execution model, (ii) a high-level programming notation which
shields the application developer from the complexities of the architecture
wherever possible, and (iii) a compiler and runtime
system which enable the efficient execution of such high-level
programs under this program execution model. The program execution model
should be the foundation for an integrated software environment that
eliminates unnecessary boundaries between the different components and
layers, and enhances the manageability of the entire system. The
programming notation should not require radically different
programming paradigms in different parts of a given machine; moreover,
it should not demand that users significantly rewrite their
applications for each new machine. Finally, the compiler and runtime
system technology should be powerful enough to deduce information
about program behavior which is required for efficient execution but
which is not specified explicitly in the high-level application
program.

3. Specification, Optimization and Code Generation for
Adaptive Applications

Mary Hall, Pedro Diniz, Jacqueline Chame

USC/ISI

As depicted in Figure 1, we foresee an application specification/compilation/execution scenario in
which the compiler extends beyond its current static role to generate code that has the ability to
adapt to information from the execution environment (performance measurements and data
values), possibly guided by the application programmer. An obvious need for adaptive
applications arises in environments gaining in importance where hardware resources are changing
during execution, such as a computational grid comprised of widely shared, distributed resources,
or power-constrained mobile-computing environments. Beyond adapting to changing resources,
adaptive applications can also compensate for limitations in compile-time knowledge, negotiate
complex tradeoffs between competing solutions, or simply reduce the complexity of a purely
static optimization approach.

Our research targets computational grid environments, but in order to do so, must also
address performance on small-scale components of grids, including uniprocessors and SMPs.
The following issues arise in supporting adaptive applications of this type:

Specification: A programmer’s interface for developing adaptive applications is needed in
cases where the result of an adaptation decision is to execute a different algorithm, such as, for
example, using different compression algorithms to trade off computation and communication
costs.

Compiler-derivation of alternate implementations and run-time tests: Whenever

possible, the compiler should manage adaptation and simplify the work of the programmer.
Today’s compilers do this in limited ways, generating parameterizable code (such as loop tiling
parameterized by a run-time value for the tile size), or performing a few specific run-time tests
(such as testing for the safety of loop parallelization). We envision in the future a more general
methodology for deriving alternative implementations and approaches to optimize the run-time
tests.

Code generation: A basic problem with today’s implementation of adaptive applications is
the mechanisms used to modify the application execution. In most cases, the solution is either
source code multi-versioning or dynamic library linking to mitigate the inherent difficulties to
access the architecture features. These approaches, however, have significant drawbacks. First, in
multi-versioning the compiler can only derive a small set of versions to be able to manage the
complexity of the generated code, thus limiting the applicability. The second approach, while
more general, has very high overhead. A better solution lies somewhere in between, where the

high costs of full-blown dynamic compilation and dynamic linking are avoided, but a single
version of the code is partially compiled at run time.

Compiler Challenges for the Next Decade
Ken Kennedy

For the past three decades research on compiler technology has been driven by the growing complexity of
the target platforms on which compiled code must run. This complexity has, in turn, resulted from two
trends: the increasing use of parallelism and the deepening of memory hierarchies. Over the next decade,
platform complexity will continue to dominate the attention of compiler writers. At the extreme, the advent
of Grid computing presents problems that make scalable parallelism look simple by comparison.

At the same time, the obsession of compiler writers with changes in architecture has obscured two other
trends that will demand attention over the next decade. First, applications are becoming far more
complicated, using a diverse collection of programming paradigms and implementation languages.
Furthermore, applications are becoming more flexible, so that one application program can serve many
different needs, with the specific application defined by the specific input data set. In this sense
applications are evolving into problem-solving environments.

The increasing complexity of platforms and applications has led to an unfortunate consequence: application
development is becoming the exclusive domain of professional programmers, narrowing the population
capable of implementations at the very moment when demand has led to a shortage of programming talent
(the temporary downturn aside). This problem is particularly evident in the technical computing arena,
where there has been a mass movement in the direction of languages like Matlab because of its simplicity
and the power of its atomic operations. With a few notable exceptions, the compiler community has paid
scant attention to this phenomenon, leaving programs written in such high-level languages too inefficient
for everyday use. Many such programs are laboriously recoded in C or C++ by hand to bring them to
“production quality.” What is needed are ways to automate the practice of these professional translators so
that the original application can be directly compiled to a production version, much as the original Fortran I
compiler automated the best practices of assembly-language programmers in the late 1950s.

To address these challenges we must recognize that the functions of a compiler can no longer fit into a
single monolithic process. Already many compiler functions, such as register assignment, have been moved
to the linking loader. Java has made on-demand compilation a norm rather than an exception. The
community must take this trend to its logical conclusion while continuing to perform individual
compilation steps at the earliest time possible so that expensive functions are done less frequently. In Grid
computing, programs will be tailored to execution resources dynamically whenever tasks are moved to new
resources in response to the changing load on the Grid. On the other hand, to support high-level problem-
solving systems, we may need to perform some optimizations speculatively at language-generation time.
In the case of Matlab, it may make sense to have pre-cooked specialized versions of the matrix primitives
that operate more efficiently in certain contexts available for use in optimized code. The compiler can then
select the best version (or sequence of primitives) for the specific context in which these primitives are
used, thus achieving the kinds of in-context optimizations that are typically carried out by professional
implementers.

In any case, the well-known compile-link-execute cycle will need to be scrapped in favor of a series of
“relaxation” steps on the way to high performance code for a specific target platform.

Future Challenges to Compiler Analysis and Design

Uli Kremer

Power and energy management is a crucial enabling technology for
future high-performance desk-top systems, handheld computers, and
sensor devices. There are two main objectives for power and energy
management: reducing heat dissipation and prolonging battery live.

The more power a device needs, the more heat it dissipates. This heat
has to be removed from system components and computers in order to
guarantee their operability. Cooling technologies based on airflows
have already reached their limits for advanced workstations and
servers. In addition, removing heat from machine rooms are a
substantial strain on any computing centers budget and the power
supply grid.

Energy optimizations typically target battery-operated mobile devices
in order to prolong battery life. Reducing the energy consumption of a
devices can increase its uptime while disconnected from a steady power
supply, or provide the same uptime, but with a lower capacity
battery. The latter criterion is important in contexts where the
weight and/or size of a device is crucial since batteries represent a
significant fraction of a systems weight and volume.

Compiler-time power and energy optimizations are needed that are
complementary to current hardware and OS techniques. Compilers have
the advantage that they can analyze whole program behavior, and
reshape this behavior in order to enable further optimization.
Hardware or OS techniques typically use a window of past program
behavior in order to predict future behavior. Code reshaping is only
possible within a small window and at a low level of program
abstraction.

The following three power and energy management strategies seem to
be most promising:

 (1) Dynamic voltage and frequency scaling,

 (2) Location-aware task mapping to remote servers, and

 (3) Power state management of system resources, and

Andrew Lumsdaine

Background:

One of my research interests is in libraries and in the interaction between
libraries and compilers (and, of course, applications). One important
purpose of a library is to capture domain-specific knowledge of a library
writer. This is typically in the form of algorithms and data structures.
However, there are other pieces of domain-specific information that a
library-writer might want to be able to express to a compiler. For
instance, the library writer might want to be able to specify certain kinds
of optimizations and transformations to the compiler. It is particularly
important that the compiler be able to apply optimizations and
transformations to user-defined types and in user-defined ways.

Challenges:

o) Enabling tighter coupling between compilers and libraries (and
applications)
o) Enabling libraries to express transformations and optimizations to the
compiler
o) Extensibility mechanisms for compilers

Approaches (some old, some new):

o) Meta-programming
o) Partial evaluation
o) Standardized 'plug-in' interfaces

Discussion:

Some interesting examples of extensibility include macro facilities in Lisp
(hygenic macros in Scheme) and the template system in C++. Although the
template system in C++ has enabled some surprising capabilities in terms of
meta-programming and compiler (and, in some ways, language) extensibility,
template meta-programming is awkward at best. An approach that allows a
more concise and natural expression of meta-programs is needed.

At the end of the day, I am also interested in being able to use libraries
and compilers for real applications in the real world. It is therefore
important that the languages and compilers be able to produce effiicient
machine code. Another, practical challenge, therefore is enabling and
providing these kinds of capabilities in an industrial-strength compiler.
Some kind of partnership with industry and/or the open-source community may
be fruitful.

Position for NSF Compiler Technology Workshop

Eliot Moss, University of Massachusetts at Amherst;
 with contributions from
Charles (Chip) Weems, University of Massachusetts at Amherst
Kathryn McKinley, University of Texas at Austin

We offer this as "bullets" to get our points across most succinctly.

CHALLENGES

- Changing and more complex ("smarter") hardware:
 To name some: predication, speculation, multi-threading and
 explicit ILP, trace caches, more exposed architectures,
 configurability, smart communication links
- Rapid pace of architectural change
- Wider range of targets:
 Handhelds to clusters to grids
- Wider range of performance dimensions:
 Time, power, space, communication bandwidth, fault tolerance, real-time
- Exploiting available parallelism:
 - At multiple architectural levels
 - From both general-purpose and domain-specific languages and libraries
- Obtaining optimal memory system performance
- Wider use of OO languages
- More system dynamicity: software AND hardware

IMPLICATIONS

- Compilers are crucial to obtaining potential performance
- Memory management is not a "solved problem":
 Memory constraints are shifting architecture in new directions
- Systems must optimize program performance in multiple dimensions
 during execution
- Programs must adapt dynamically to changing resources
- Online optimization demands better, finer-grained, online performance
 measurements; both a hardware and software issue
- We need faster, more flexible, and functionally more broad simulators
 (e.g., cycle level accuracy as desired, for parallel systems, supporting
 dynamic loading, dynamic compilation, easy hardware extension,
 power estimation, etc.)
- Compiler and simulator infrastructure must advance to support
 CO-EVOLUTION of architecture and compilers (vs. compilers trailing behind)
- Systems should apply optimization effort more effectively:
 - We must develop a framework for estimating costs and benefits of
 optimizations both locally and in the broader sense, and then trading off
 within specific constraints: a framework for meta-compilation issues
 - Compilers need to become more reflective ("self-aware"), with the
 ability to change their own structure to optimize efficiently in the
 face of changing requirements
- We need means to codify and exploit important semantic properties of data
 types that are hard (or expensive in the online case) to extract via
 analysis.
- Compilers need to be part of a more dynamic distributed system
 - Use a distributed collection measurement/profiling agents and
 compilation/optimization agents to improve performance dynamically and

 adaptively across a set of systems of varying capabilities and scale
 - Distribute measurement and adaption/optimization through a grid, to
 make it adaptive and fault-tolerant
 - Distribute measurement and optimization work between handhelds and
 servers (as a rather simple example of the above)
- Compilers themselves need to be more agile in their structure:
 This follows from several of the points above.

 Keshav Pingali

 1. We do not have good program performance models for use in
compilers.

 Explanation:

 The compiler community has developed a large number of program
transformation techniques that can convert a given program into other
semantically equivalent programs. However, even for uniprocessors, we
do not have adequate performance models for permitting the compiler to
select the one that gives the best performance. The best evidence for
this is the existence of systems like ATLAS for generating optimized
BLAS libraries for uniprocessors. The problem is even worse for
multiprocessors.

 I believe that most of the performance prediction techniques in the
literature are not terribly relevant to the compiler community because
they are focused on getting accurate quantitative estimates of things
like cycle counts, and running time. We can make do with more
qualitative measures that permit us to rank programs by performance;
absolute performance in terms of MFlops etc. is interesting but not as
relevant.

 2. Suppose we can develop good performance models. We still do not
know effective strategies for guiding the compilation process.

 Explanation:

 We can make a useful analogy with chess programs. A chess program has
to have three things:
 (i) it must know what moves are legal,
 (ii) it must be able to evaluate the "merit" of making different moves, and
(iii) it must have some way of pruning the search-space of legal moves
 to avoid combinatorial explosion.

 There are obvious analogies with modern compilers. Having good
performance models is point (ii); however, even with accurate
performance models, we must solve (iiii).

 3. We do not have simple ways of incorporating domain-specific
knowledge into the optimization process.

 Explanation:

 Giving the compiler domain-specific knowledge will raise the semantic
level at which programs are written.

A Research Perspective, Lawrence Rauchwerger - Texas A& M University. View HTML, PDF*

 Martin Rinard

I see two primary opportunities for new compiler research:
new programming languages and new machines. Existing
languages are still based on the traditional abstractions of
single-word values, arrays, and references, all of which
have an obvious and direct translation into machine-level
constructs. As we move forward, the need for increased
programmer productivity and increased confidence in deployed
software will require developers to use more expressive and
semantically rich abstractions. Some of these abstractions
will be closely tied to the application domain, while others
will be of general-purpose utility. The emerging need for these
kinds of language constructs can be seen in the increasing
importance of domain-specific languages, scripting languages,
and large libraries filled with powerful abstractions such as sets, maps,
and relations. Embedding library-level implementations
of these abstractions in ad-hoc programming environments leads
to inefficient systems that are cumbersome to use. Compilers can
eliminate this problem by delivering efficient
implementations of full-fledged languages with richer abstractions.

The primary hardware trend of the last decade has been the development
of fantasically complicated hardware to implement an ancient
instruction set. The trend of the next decade is tightly-coupled
parallel hardware designed for high-performance, low-energy implementations
of sensory applications, which process streams of visual, audio, and other sensory
data. Compilers will play a crucial role in enabling developers to produce
programs that exploit the hardware resources that these new systems will
contain.

Program analysis with applications in security and software engineering
is a related field that will also be very important in the future.

Barbara G. Ryder

There are many challenges to program analysis presented by modern
architectures and programming languages. Software systems will be built
from interchangeable, heterogeneous components (object-oriented systems are
being built thusly already). Program analysis for compilation will have to
deal with incomplete programs, because source code for components will not
be readily available. Whole-program approaches, used up until now, are not
possible in this environment. The analysis may have to be conditional on
assumptions, rather than summarizing over all possible executions, as in
classical static analysis. If semantic assumptions are made in order to
enable optimization of programs, then these assumptions will need to be
validated later, as the system is running (e.g., guards on optimized code,
runtime type checks). Checking of these assertions will need to be
non-intrusive with small overhead, if the optimizations thus enabled are to
be effective.

Modern programming languages feature increased use of dynamic binding of
many entities (e.g., methods called, the set of classes used). To optimize a
system which uses these dynamic aspects will require runtime observation of
program behavior, so that the cost savings of transformations can be
estimated accurately and the correctness of transformations ensured.
Adaptive Java compilation systems experiment with this sort of compilation
already; they choose methods to optimize after examining the code as it
executes. One can envision picking the specific transformations to apply
similarly. In this type of environment, program optimization is an ongoing
process, rather than a fixed compilation stage and the boundary between
static and dynamic analyses is blurred.

Heterogeneity of system components means that analysis techniques may need
to combine derived information between system units with differing
semantics. A language-independent analysis framework for doing this will be
needed. Heterogeneity of architectures will necessitate informing the
compiler of characteristics of the target architecture, before choosing
optimizing transformations to apply. This can be done in an encapsulated
manner, but it implies that a compiler will have a ³controller² component
that ³knows² about the target environment. Whether or not the application
will run on a distributed network of machines or one target machine is also
relevant to the compilation task and will guide the choice of optimizing
transformations.

Therefore, the key changes in program analysis for compilation are:
--the reformulation of analyses to deal with incomplete programs
--the combination of static with dynamic analyses in order to accommodate
increased use of dynamic binding
--the need to deal with heterogeneity of target architectures and languages
Compilers of the future will be part of the execution environment of a
software system, with compilation decisions being validated at runtime. To
deal with heterogeneity of target architectures and their distribution in a
network, compilers will need encapsulated knowledge of the target
environment as well as program analysis to trigger specific optimizing
transformations.

Sibylle Schupp

The major challenge for me is to provide good compiler support for
programs written in higher languages. Under "higher languages"
I understand languages with advanced abstraction mechanisms, e.g.,
abstract and parameterized types as they are available in
object-oriented or generic programming; with "programs" I have
large software system and libraries in mind; and by "good compiler support"
I mean optimizing compilers that optimize user-defined types as good
as built-in types.

Why is this a challenge?
o Traditional compilers know how to optimize pointers, arrays, or built-in
 floating point types but don't know what to do with iterators, deques,
 user-defined real numbers---and are not organized in a way that would
 allow those who do know, i.e., advanced users and type designers, to
 provide a compiler with the missing semantic information about the
behavior
 of a particular abstract data type.
 In other words, to handle ADTs at their natural, abstract level, compilers
 cannot longer work as black boxes but have to somehow open up.

What will be the advantage?
o Software systems can, and will, be designed according to the principles
 of modern programming methodology as soon as there is no
 performance penalty anymore. They will benefit from the safety,
 robustness, and reusability that higher languages support.
o New optimization opportunities are possible that are based on data
 type invariants or, generally, the semantics of an abstract data
 type and that are not available after the user-defined type has been
lowered
 to a built-in type.

Why will it work?
o A new breed of users, library designers, has both the knowledge and
 the desire to aid the compiler in the optimization of user-defined
 types.
o The idea is not entirely new. If an optimizer needs user-provided
 information for its completion it's an optimizer _generator_ rather, and
 as such yet another variant of the idea of compiler generators,
 besides parser generators and code generators generators

What is needed to make it work?
o The traditional benchmarks (SPEC etc.) are useless (for my projects).
 For publication, evaluation, comparison purposes new benchmarks are
needed
 that measure how well an optimizer handles explicitly non-imperative
 features, e.g., class types, member functions, parameterization.
 Since it's a long way to extend the standard optimizations
 for imperative programs to optimizations for object-oriented or generic
 programs, the benchmarks should be fine-grained enough to measure
 specific optimizations. For example there should be a benchmark
 for 'constant propagation' and it should be applied to a complete
 hierarchy of types (from built-in types over simple classes to classes
 that are parameterized in various ways).

o A standardized and formalized high-level description (methodology) is
 necessary so that the externally provided semantic information
 (1) is portable across different compilers; (2) can be verified off-line.
 I would suggest using 'concept hierarchies' for such standardization
 process but there are other approaches as well.

o The engineering part of compiler research should be factored out
 and done by someone else. By far our biggest technical problem is to
 master the Gnu GCC beast. We spend considerable time wading through its
 code and undocumented features when integrating our results in the Gnu
 compiler, and we are also limited by major design decisions of GCC
 (e.g., GCC's front end representation in TREE or its inliner).
 Collaborating with the GCC team in a way that would allow us we to have
some
 influence on GCC's design, would be tremendously helpful, therefore. It
 would require, however, funding for the companies that maintain GCC.

Michael Smith

Here is a quick summary of my thoughts on the future driving needs and
fruitful directions in compiler technology. Please realize that these three
items are areas that personally interested me. The list is not meant to
imply that these are the only interesting areas.

1. Tools and techniques for feedback-directed and dynamic optimization. The
run-time modification or rearrangement of
the dynamic instruction stream, is a well-accepted technique used by almost
every hardware manufacturer to improve the performance of the applications
running on their processors. With the growing popularity of systems for
binary translation and virtual machines for "write once, run anywhere" code,
the industry has begun to see the benefits of having a software layer above
the hardware that aids in functions such as the dynamic translation and
optimization. Today, manufacturers like Transmeta with their Code Morphing
software, Sun with their Java HotSpot optimizer, and HP with their Dynamo
system hide the power of this layer in the name of transparency. What if
the software layer in these systems were not invisible? What further
benefits could we reap? Looking deeper, what kinds of interfaces might we
export, what tools are necessary to support research/development, and how
might we best organize such a system?

Michael D. Smith. “Overcoming the Challenges to Feedback-Directed
Optimization,” Proceedings of the ACM SIGPLAN Workshop on Dynamic and
Adaptive Compilation and Optimization (Dynamo'00), invited paper, Boston,
MA, January 18, 2000. Also appears in ACM SIGPLAN Notices, 35(7):1–11, July
2000. (http://www.eecs.harvard.edu/machsuif/publications/dynamo00.pdf)

2. Run-time management of processor power and temperature. Power and
temperature concerns have joined performance as a top concern of computer
system manufacturers. I believe that we are only starting to understand how
the compiler and software run-time system can aid in these areas.

3. Compilation for small, embedded devices. Though I don't know much about
this area, I am intrigued by some of the problems I've read about.

NSF Workshop on compilers: Issues of importance, Mary Lou Soffa. View HTML, PDF*

Steve Wallach

as hardware technology as evolved over time, new demands have been
placed on compiler technology. vector machines required advances in
dependency analysis and memory reference patterns. risc based
systems required advances in register allocation, cache blocking and
instruction scheduling. on board multi-level caches required advances
in latency hiding and cache aware optimizations.

using the sia roadmap, and some intuition we will project what type of
architectures could be expected by the end of the decade and the type
of compiler advances that will be needed to fully exploit these new
hardware structures.

